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1. Introduction 

The ability to detect trace explosives is of interest to the U.S. Army Research Laboratory (ARL).  

The presence of small amounts of explosives could be an indicator of a larger explosive nearby, 

either an improvised explosive device (IED) or a homemade explosive (HME).  At ARL, we 

have been investigating the possibility of using standoff laser induced breakdown spectroscopy 

(LIBS) as a method to detect trace explosives at a distance (1–4).  We have demonstrated the 

feasibility of classifying unknown trace residues as either explosives or non-explosives on a 

variety of surfaces (5).  For ongoing studies, we need to be able to quantify the amounts of 

explosives interrogated by the LIBS microplasma.  The ability to produce known, relevant 

amounts of explosive on a variety of surfaces is needed.  A 2006 Massachusetts Institute of 

Technology (MIT) Lincoln Laboratory study measured the amount of explosives left on surfaces 

by an individual who was handling explosives (6).  By applying a known range of explosive 

quantities, the detection limit of different trace explosive detection methods can be determined.  

In order to produce these known, relevant amounts of trace explosives, we used an inkjet printing 

system (JetLab 4, MicroLab Systems).  In this report, we performed a proof-of-principle 

experiment using the inkjet printer to produce a range of known cyclotrimethylene-trinitramine 

(RDX) quantities onto aluminum (Al) substrates.  These samples were interrogated by a bench 

top LIBS system in order to calculate a detection limit.  The procedure for producing known 

quantities of relevant amounts of explosives and determining the detection limit can then be 

applied to different LIBS systems or other explosive detection methods for a variety of trace 

detection applications. 

2. Experiment 

Colleagues at ARL provided the RDX that was used in the experiment.  The RDX was dissolved 

into the solvent isobutanol at a concentration of ~0.4 mg/mL.  The solution was then filtered 

through a membrane with a pore size of 0.45 m so that no large RDX particulate would clog the 

inkjet nozzle.  The concentration of the resulting solution was determined by adding known 

quantities of the solution to weighing dishes.  The isobutanol was allowed to evaporate, and then 

the RDX was weighed.  The concentration of the solution was determined to be 0.18 ±  

0.02 mg/mL.  The inkjet system is shown in figure 1.  The RDX solution was placed in the inkjet 

reservoir.  The inkjet produces a defined number of small droplets (~100 pL per droplet) that are 

deposited onto a substrate in a predetermined pattern.  The droplet evaporates, depositing the 

solute onto the substrate surface.  The inkjet system is used to calculate the average volume of 

the droplets.  
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Figure 1.  Jetlab 4 (MicroFab systems). 

Samples were prepared by dropping 100 droplets on a position on an Al substrate.  Then the 

inkjet nozzle moved to a different spot and dropped another 100 droplets.  This procedure was 

repeated until a 5 × 4 grid of RDX deposits had been formed.  The process is repeated by 

dropping another 100 droplets at each point on the grid.  This is repeated until the desired 

number of droplets is reached at each point of the grid.  By adding 100 drops at a time to each 

sample spot on the grid, we produced uniform-sized deposits of different quantities.  The size of 

the RDX deposited on the Al was a small ring less than a millimeter in diameter that was 

consumed entirely by a single laser-generated microplasma.  For this experiment, we produced 

nine samples with RDX deposited in a 5 × 4 grid.  The first substrate had 200 drops deposited at 

each grid point.  The second substrate had 300 drops deposited at each grid point, and so forth, 

up to the ninth substrate, which had 1000 drops deposited at each grid point.  From the number 

of droplets, the droplet volume, and the sample concentration, the deposited mass of RDX was 

calculated. 

The LIBS system experimental setup is shown in figure 2.  A neodymium-doped yttrium 

aluminum garnet (Nd:YAG) laser (Big Sky, CFR400) produces a nanosecond laser pulse that 

was focused by a 10 cm focal length lens onto the sample surface and fired in a single-shot 

mode.  The emission from the resulting microplasma was collected by a parabolic mirror and 

focused onto a seven-fiber (600 m diameter) bundle.  Each fiber was connected to one of the 

seven channels in the multi-channel charge-coupled device (CCD) spectrometer (Ocean Optics 

Inc., LIBS 2000+), giving broadband coverage from 200–950 nm at relatively high resolution 

(~0.1 nm).  The spectrometer was set to begin collecting light 1.00 s after the plasma initiation 

in order to reduce the background continuum inherent in LIBS experiments.  The spectrometer 

gate width was 2 ms.  An argon (Ar) flow was directed across the sample surface where the 

microplasma was formed to minimize the oxygen (O) and nitrogen (N) contributions from air. 
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Figure 2.  LIBS experimental setup (a) Nd:YAG 

laser, (b) focusing optics, (c) pierced 

mirror, (d) microplasma, (e) sample, 

(f) collection optics, and  

(g) spectrometer/detector. 

3. Results 

Two sets of samples were produced in order to determine the detection limit for RDX on Al for 

two different laser energies, 230 and 340 mJ.  The two sample sets are shown in table 1.  Twenty 

LIBS spectra were collected from each sample.  Representative spectra from the Al substrate 

blank, the 300 drop sample, and the 700 drop sample collected at 340 mJ are shown in figure 3.  

The largest atomic emission lines are due to the Ar bath gas and the Al substrate.  We are only 

interested in the atomic emission lines associated with the constituent elements of RDX—i.e., 

carbon (C), hydrogen (H), O, and N—shown in the insets.  As more drops are applied, we see the 

atomic emission intensities of C, H, N, and O increase, indicating that more RDX is present as 

more drops from the inkjet printer are applied.  The strongest atomic C emission line is shown in 

the top left inset of figure 3.  We used the atomic emission line intensity at 247.8 nm to calculate 

the detection limit of RDX on Al.  The standard deviation of the noise was first calculated.  Any 

individual C emission intensity at 247.8 nm that was not three times the standard deviation of the 

noise was considered to not have a significant C signal and was set to zero.  The average 

background corrected C emission intensity at 247.8 nm was calculated from the 20 samples.  We 

removed any samples that had a C emission intensity outside of two standard deviations from the 

average.  From the remaining spectra, we kept the 10 that had the largest emission intensities.  

We then recalculated the C intensity average from the 10 spectra.  This process was repeated for 

each set of samples, and the results are displayed in table 1.  In figure 4, the C intensity is 
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displayed as a function of mass for the samples collected using a 230-mJ laser pulse.  A linear fit 

and a weighted linear fit are applied to the data points.  The limit of detection can be determined 

from the linear fits in figure 4 by the following equation 

 m
DOL b*3

... 
 
, (1)

 

where b is the standard deviation of the noise at 247.8 nm on the blank Al substrate, and m is 

the slope of the line.  The slope defines the analytical sensitivity of the measurements.  Using 

equation 1 and the data from figure 4, we calculated the detection limit of RDX on Al using a 

230-mJ laser pulse as 1.42 ± 0.08 ng for the linear fit and 1.64 ± 0.09 ng for the weighted linear 

fit.  The same process was repeated for the LIBS spectra collected using 320 mJ.  Using equation 

1, the detection limit of RDX on Al using a 320-mJ laser pulse was found to be 0.12 ± 0.01 and 

0.17 ± 0.02 ng for the linear and weighted linear fits, respectively. 

Table 1.  Quantifiable RDX samples used to determine the detection limit of the LIBS system at two laser energies. 

RDX Samples Collected With 230 mJ 

No. of Drops Average Drop Volume 

(pL) 

Mass 

(ng) 

Carbon Intensity 

0 (blank) 0 0 0 

200  135 ± 8  4.8 ± 0.6  16 ± 2 

300  122 ± 7  6.6 ± 0.8  19 ± 3 

400  150 ± 10  10.8 ± 1.4  22 ± 3 

500  134 ± 11  12.1 ± 1.7  18 ± 4 

600  137 ± 5  14.8 ± 1.7  42 ± 10 

700  140 ± 5  17.6 ± 2.1  57 ± 20 

800  148 ± 10  21.3 ± 2.7  62 ± 10 

900  138 ± 10  22.4 ± 2.9  65 ± 13 

1000  146 ± 7  26.3 ± 3.2  89 ± 9 

RDX Samples Collected With 340 mJ 

0 (blank) 0 0 0 

300 

104 ± 9  

(measured once and used 

for all the following 

samples) 

5.6 ± 0.8 88 ± 30 

400 “  7.5 ± 1.1  198 ± 41 

500 “  9.4 ± 1.3  447 ± 80 

600 “  11.2 ± 1.6  516 ± 94 

700 “  13.1 ± 1.8  571 ± 102 
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Figure 3.  LIBS spectra of blank Al, RDX deposit from 300 drops, and RDX deposit from 700 drops.  Insets 

show C, H, N, and O atomic emission lines. 
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Figure 4.  C atomic emission intensity as a function of the mass of RDX.  A linear fit (red) and a weighted 

linear fit (blue) were used to fit the data.  Error bars represent one standard deviation. 

4. Conclusion 

We have established a procedure for creating quantifiable explosive samples that can be tested 

with LIBS systems and other trace explosive detectors in order to determine the limit of 

detection.  The inkjet printer will allow samples to be made on all kinds of surfaces and is not 

limited to Al.  Different surfaces will interact with the droplets in different ways, so care must be 

made in observing how the droplets interact with the surface and how the deposit is drying.  This 

is important for LIBS because an assumption is made that the sample is entirely consumed by the 

microplasma.  If the sample has spread over a larger area than the microplasma sampling area, 

the detection limit calculation will not be accurate.  We also demonstrated that the detection limit 

is dependent on laser energy.  The microplasma generated by the 340-mJ laser energy consumed 

and ionized the RDX deposit more efficiently than the 230-mJ laser pulse; therefore, the signal-

to-noise due to the C atomic emission line increased.  The detection limit would also be 

significantly altered by changing the substrate because the LIBS emission signal is dependent on 

the laser-material interaction. 
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We used a linear fit and a weighted linear fit to determine the detection limits from the C 

intensity as a function of RDX mass.  The weighted linear fit returns a much lower R
2
 value 

since it is dependent on the standard deviation of the C intensity at each mass value.  Using a 

weighted linear fit is more statistically sound; for this present experiment, however, only 10 

samples were used for each mass amount.  To improve future experiments, more samples must 

be obtained in order to provide a more robust statistical quantification.  Improvement to the 

linear fit could also be obtained by selecting an appropriate internal standard.  In the case of this 

experiment, the internal standard could be an Ar atomic emission line, or an atomic emission line 

associated with the Al substrate.  A good internal standard choice would be an atomic line that 

has a similar emission wavelength and upper energy state to the analyte atomic emission line (7). 

For this particular experiment, we calculated detection limits of 0.12 and 1.42 ng using a linear 

fit at laser energies of 340 and 230 mJ, respectively.  The calculated detection limits only apply 

to this particular LIBS setup—i.e., focusing and collecting optics configurations, the detector, Ar 

bath gas, and Al substrate.  Further improvements that could be made to the procedure include 

selecting a wider range of deposition quantities in order to obtain a better indication of the 

dynamic range of the detection method.  The use of double pulse LIBS could further improve the 

detection limit since the two pulses would increase the signal by more efficiently ionizing the 

sample (8, 9).  Finally, multivariate analysis could be used by using more of the LIBS spectral 

signal for determining the detection limit.  Other atomic emission lines from the constituent 

elements (C, H, O, and N) beyond the C atomic emission line at 247.8 nm would be incorporated 

into the quantification analysis.
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